
PZN-(5-7)%PT SINGLE CRYSTAL PRODUCTS

Properties at a glance (See behind for description of various crystal types and their symbols)

Crystal type	011P-32A	011P-32S	011P-31T	011P-33T	001P-31T -110L	001P-33(31)T -100L
%PT (Nominal)	5.5	6	6	6	6-7	6-7
$oldsymbol{arepsilon}_{33}^T / oldsymbol{arepsilon}_o$	4000	4500	4500	4500	6500	6500
d _{ij} (pC/N)	-2600 (d ₃₂)	-3000 (d ₃₂)	1100 (d ₃₁)	1900 (d ₃₃)	-1200 (d ₃₁)	2400 (d ₃₃) -1400 (d ₃₁)
E _C (kV/mm)	0.55	0.58	0.58	0.58	0.35	0.35
E _{RO/RT} * (kV/mm)	0.85 (E _{RO})	0.70 (E _{RO})	0.70 (E _{RO})	0.70 (E _{RO})	0.90 (E _{RT})	0.90 (E _{RT})
σ _{RO/RT} ** (MPa)	10 (σ _{RO})	6 (σ _{RO})	>85	5 (σ_{RO})	80 (σ _{RT})	5 (O _{RO})
						- (O _{RO})
s (pm²/N)	170 (s_{22}^E)	180 (s_{22}^E)	54 (s ^{fi})	12 (s_{33}^D)	40 (s_{11}^{E})	16 (s_{33}^D)
						90 (s_{11}^E)
d/s (C/m²)	15	16	20	158	32	150 (d_{33}/s_{33}^D)
u/3 (C/III-)	13					17 (d_{31}/s_{11}^E)
k _{ij}	0.90 (<i>k</i> ₃₂)	0.91 (<i>k</i> ₃₂)	0.75(k ₃₁)	0.90(k ₃₃)	0.80 (k ₃₁)	$0.90(k_{33})$
						$0.50(k_{31})$
v_{ii} (m/s)	850 (v_{22}^{E})	800 (v_{22}^{E})	1500 (v_{11}^{E})	3250 (v_{33}^D)	1800 (v_{11}^{E})	2750 (v_{33}^D)
						1200 (v_{11}^{E})
T _{RO/RT} (°C)	110 (T _{RO})	106 (T _{RO})	106 (T _{RO})	106 (<i>T_{RO}</i>)	100 (<i>T_{RT}</i>)	100 (T _{RT})
Main Applications	U/W projectors (with pressure release)	Hydrophones	Sensors & actuators of large transverse force	Sensors & actuators	Sensors & actuators of large transverse force	Sensors & actuators

^{*}Transformation field at zero compressive stress in the active direction.

^{**}Transformation compressive stress in the active direction at zero applied field.

PZN-(5-7)%PT SINGLE CRYSTAL PRODUCTS

DESCRIPTION AND ORIENTATION OF VARIOUS PZN-(5-7)%PT CRYSTAL TYPES AND THIER SYMBOLS

011P-32A / 011P-32S	[0-11] [011](P)	[011]-poled transverse (32) mode crystal of [0-11] ¹ x [100] ^{2(A)} x [011] ^{3(P)} . Type A is recommended for Actuator and Type S for Sensor applications, notably as motor section of underwater projectors and sensing elements of hydrophones respectively.
011P-31T	[0-11](A)	[011]-poled transverse (31) mode crystal of $[0-11]^{1(A)} \times [100]^2 \times [011]^{3(P)}$ cut for transverse-mode transducers (31T) where high transverse loads are present.
011P-33T	[0-11] [011](A,P)	[011]-poled longitudinal (33) mode crystal of $[0-11]^1 \times [100]^2 \times [011]^{3(A,P)}$ cut for longitudinal mode transducers (33T) when relatively high d_{33} and crystal stiffness are advantageous.
001P-31T-110L	[1:10](A) [001](P)	[001]-poled crystal of $[110]^{1(A)} \times [1-10]^2 \times [001]^{3(P)}$ cut as transverse-mode transducers (31T) where a high d_{31}/s_{11} E value is advantageous.
001P-33T-100L 001P-31T-100L	[100] [010] [100](A) [001](P)	[001]-poled crystal of $[100]^1 \times [010]^2 \times [001]^{3(A,P)}$ cut as longitudinal mode transducer (33T). Said cut may also be used as transverse mode transducer (31T), i.e., $[100]^{1(A)} \times [010]^2 \times [001]^{3(P)}$.

^{*} For other crystal compositions and cuts, please kindly contact us with your request.

Key on crystal designation / symbols:

- * 011P and 001P indicate poling direction being [011] and [001], respectively, which is also the 3-direction.
- * 33, 32 and 31 denote the mode of actuation/sensing, 33 being the longitudinal mode, and 32 and 31 are the transverse modes with the active direction being along the 2- and 1-axis.
- * A, S and T denote actuator, sensor and transducer, respectively.
- * 100L and 110L indicate the active length directions in [001]-poled crystals.
- * Superscripts (A) and (P) next to directional axes denote the active and poling direction respectively.

CRYSTAL DIMENSIONS AND TOLERANCES

Direction	Dimensional Range	Tolerances (+/-)
Thickness (i.e., poling direction) (mm)	0.3 - 3.0	0.015
Other two orthogonal directions (mm)	2.0 - 25.0	0.030

Crystals can be supplied in either unpoled (either bare or electroded) or electroded and poled condition. Our standard electrode consists of a thin NiCr bond coat followed by a thicker AuPd electrode layer, both applied via the RF sputter-deposition technique.

Crystals of smaller dimensions, larger thickness in poling direction and/or tighter tolerances are available upon request.

Microfine Materials Technologies Pte Ltd

10 Bukit Batok Crescent, The Spire #06-02, S(658079) SINGAPORE

Tel/Fax: +65 6515 3122 Web: www.microfine-piezo.com
Product & Sales Enquiries : sales@microfine-piezo.com
Technical & Other Enquiries : info@microfine-piezo.com